Ethylene in seed formation and germination

Author:

Matilla Angel J.

Abstract

AbstractAbstract In seed formation the role of ethylene has received little attention. The data available on zygotic embryogenesis suggest an association of the ethylene biosynthetic pathway and seed maturation. Over the course of dicot embryogenesis, ACC-oxidase mRNA can be expressed in the cotyledons and embryonic axis. However, as maturation proceeds, cotyledonary ACC-oxidase expression disappears. In some seeds that develop primary dormancy, ethylene synthesis can be among the prerequisites for breaking dormancy. Moreover, the persistence of dormancy may be related to the difficulty of the embryonic axis to produce the necessary ethylene levels or to low tissue sensitivity. The use of inhibitors of ethylene biosynthesis or its action has provided data implicating an ethylene requirement for seed dormancy or germination in some species. However, the role of ethylene in germination remains controversial. Some authors hold that gas production is a consequence of the germination process, while others contend that ethylene production is a requirement for germination. Furthermore, among seeds that require ethylene, some are extremely sensitive to the gas, while others require relatively high levels to trigger germination. Recent studies withXanthium pennsylvanicumseeds suggest that β-cyanoalanine-synthase is involved in ethylene-dependent germination. In addition, regulation of the partitioning ofS-adenosyl-L-methionine (AdoMet) between the ethylene vs polyamine biosynthetic pathways may be a way of controlling germination in some seeds. Such regulation may also apply to the reversal of seed thermoinhibition, which can occur when polyamine synthesis is inhibited, thereby strongly channelling AdoMet towards ethylene. The biological models and approaches that may shed additional light on the role of ethylene during seed germination are presented.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Reference172 articles.

1. ACC-derived ethylene production, a sensitive test for seed vigor;Khan;Journal of the American Society of Horticultural Science,1994

2. Hormonal regulation of primary and secondary seed dormancy;Khan;Israel Journal of Plant Physiology,1980

3. An mRNA encoding a response regulator protein from Brassica napus is up-regulated during pod development

4. Physiology of Oil Seeds

5. Ethylene-dependent action of gibberellin in seed germination of Amaranthus caudatus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3