Shrub canopy interception of diaspores dispersed by wind

Author:

Qin XuanpingORCID,Liu Zhimin,Liu Minghu,Liang Wei,Baskin Carol C.,Baskin Jerry M.,Xin Zhiming,Li Xinle,Wang Zhigang,Zhou Quanlai,Luo Fengmin,Gao Junliang,Naren Gerile

Abstract

AbstractInterception by plant canopies during wind dispersal can affect the final destination of diaspores. However, how the interaction of wind speed, canopy type and diaspore attributes affects interception of diaspores by the plant canopy has rarely been studied. We investigated canopy interception for 29 species with different diaspore attributes, six canopy types and six wind speeds in controlled experiments in a wind tunnel. Shrub canopy interception of diaspores were controlled by wind speed and diaspore attributes, but the latter had a greater influence on canopy interception than the former. At low wind speed, diaspore wing loading had a large influence on canopy interception, whereas at high wind speed, diaspore projection area had a large influence. The chance of canopy interception at a particular wind speed was additionally affected by the type of canopy. This study increases our knowledge of the dispersal process, corrects the previous understanding of diaspore dispersal potential and improves the theoretical basis for predicting spatial pattern and dynamics of plant populations.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3