Cellular and metabolic damage induced by desiccation in recalcitrant Araucaria angustifolia embryos

Author:

Espindola L. Salmen,Noin M.,Corbineau F.,Côme D.

Abstract

AbstractEmbryos of Araucaria angustifolia seeds showed no dormancy; they germinated easily at temperatures ranging from 10° to 30°C, and the thermal optimum was about 25–30°C; they were recalcitrant. At harvest, their mean moisture content (dry weight basis) was about 120% and they completely lost viability when their moisture content fell to about 30%. The cotyledons were more sensitive to dehydration than the radicle. Dehydration induced deterioration of cell membranes as indicated by a high increase in leakage of solutes. It also resulted in damage in the nuclei, which was not repaired upon rehydration. During desiccation, respiratory activity decreased; however, O2 uptake was not an indication of germination ability, since it was significantly affected only when embryo moisture content reached the critical value of 30%. The decrease in the capacity to convert 1-aminocyclopropane 1-carboxylic acid to ethylene, which was observed at 30–60 min of dehydration, was a very early indicator of deterioration in embryos. Desiccation resulted also in a rapid decrease in the ability for protein synthesis as measured by [35S]methionine incorporation into total protein; 50% inhibition was observed after 30–60 min of desiccation for both axis and cotyledons.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3