Author:
Allen Phil S.,Meyer Susan E.
Abstract
AbstractAdvances in seed biology include progress in understanding the ecological significance of seed dormancy mechanisms. This knowledge is being used to make more accurate predictions of germination timing in the field. For several wild species whose seedlings establish in spring, seed populations show relevant variation that can be correlated with habitat conditions. Populations from severe winter sites, where the major risk to seedlings is frost, tend to have long chilling requirements or to germinate very slowly at low temperatures. Populations from warmer sites, where the major risk is drought, are non-dormant and germinate very rapidly under these same conditions. Seed populations from intermediate sites exhibit variation in dormancy levels, both among and within plants, which spreads germination across a considerable time period. For grasses that undergo dry after-ripening, seed dormancy loss can be successfully modelled using hydrothermal time. Dormancy loss for a seed population is associated with a progressive downward shift in the mean base water potential, i.e., the water potential below which half of the seeds will not germinate. Other parameters (hydrothermal time requirement, base temperature and standard deviation of base water potentials) tend to be constant through time. Simulation models for predicting dormancy loss in the field can be created by combining measurements of seed zone temperatures with equations that describe changes in mean base water potential as a function of temperature. Successful validation of these and other models demonstrates that equations based on laboratory data can be used to predict dormancy loss under widely fluctuating field conditions. Future progress may allow prediction of germination timing based on knowledge of intrinsic dormancy characteristics of a seed population and long-term weather patterns in the field.
Publisher
Cambridge University Press (CUP)
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献