Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides

Author:

Meyer Susan E.,Debaene-Gill Susan B.,Allen Phil S.

Abstract

AbstractHydrothermal time (HTT) describes progress toward seed germination under various combinations of incubation water potential ( ) and temperature (T). To examine changes in HTT parameters during dormancy loss, seeds from two populations of the bunchgrass Elymus elymoides were incubated under seven temperature regimes following dry storage at 10, 20 and 30°C for intervals from 0 to 16 weeks. Fully after-ripened seeds were primed for 1 week at a range of s. Data on germination rate during priming were used to obtain a HTT equation for each seed population, while data obtained following transfer to water were used to calculate HTT accumulation during priming. HTT equations accurately predicted germination time course curves if mean base water potential, b(50), was allowed to vary with temperature. b(50) values increased linearly with temperature, explaining why germination rate does not increase with temperature in this species. b(50) showed a linear decrease as a function of thermal time in storage. Slopes for the T × b(50) relationship did not change during after-ripening. This thermal after-ripening time model was characterized by a single base temperature and a constant slope across temperatures for each collection. Because the difference between initial and final b(50)s was uniform across tempera-tures, the thermal after-ripening requirement was also a constant. When seeds were primed for 1 week at −4 to −20 MPa, accumulation of HTT was a uniform 20% of the total HTT requirement. When primed at 0 to −4 MPa, HTT accumulation decreased linearly with decreasing priming potential, and a hydrothermal priming time model using a constant minimum priming potential adequately described priming effects. Use of these simple HTT relationships will facilitate modelling of germination phenology in the field.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3