Abstract
Numerous case–control and prospective studies have identified elevated plasma homocysteine as a strong independent risk factor for cerebovascular, cardiovascular and peripheral vascular disease. Homocysteine is formed as a result of the breakdown of the dietary amino acid methionine. Once formed, homocysteine is either remethylated to methionine, or undergoes a trans-sulfuration reaction to form cysteine. The re-methylation of homocysteine to methionine is dependent on three B-vitamins, i.e. riboflavin, vitamin B12and folate. The second pathway of homocysteine metabolism is the trans-sulfuration pathway which requires both vitamin B6and riboflavin for its activity. Thus, up to four B-vitamins are required for intracellular homocysteine metabolism. Many studies have noted strong inverse relationships between homocysteine levels and the status of both vitamin B12and folate. However, the relationship between vitamin B6status and homocysteine is still uncertain. Similarly, numerous intervention studies have demonstrated effective lowering of homocysteine levels as a result of folate and vitamin B12supplementation, while the homocysteine-lowering ability of vitamin B6is unclear. Even though riboflavin plays a crucial role in both the trans-sulfuration and remethylation pathways of homocysteine metabolism, the relationship between riboflavin status and homocysteine levels has not been investigated. The exact mechanism that explains the vascular toxicity of elevated homocysteine levels is unknown at present, studies indicate that it is both atherogenic and thrombogenic. To date, no randomized clinical trial has demonstrated that lowering of homocysteine levels is beneficial in terms of reducing the prevalence of vascular disease. It is probable, however, that optimal B-vitamin status is important in the prevention of vascular disease.
Publisher
Cambridge University Press (CUP)
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献