Dietary fibre from seeds of Australia native Plantago species as modulators of quality and glycaemic response in starch gels

Author:

Strkalj L.,Cowley J.M.,Yakubov G.E.,Burton R.A.

Abstract

Dietary fibre (DF) is a non-digestible nutrient which has important roles in the digestive system including mantaining regularity, and reducing the risk of certain cancers and non-communicable diseases, such as metabolic syndrome. Even though the positive health effects of DF have long been established, it has been shown that DF intake for children and adults in Australia is below the recommended range – less than 20% of adults met the suggested intake for reducing risk of chronic diseases(1). Plantago ovata, also known as psyllium, is widely used as DF supplement with evidence showing positive effects on weight control, hyperglycaemic response, cholesterol levels, and irritable bowel syndrome(2). P. ovata seed husk produces a highly viscous gel called mucilage when seeds are exposed to moisture. This mucilage is nearly pure DF and has an intricately layered structure which can be further fractionated and studied as a proxy for different gelling systems. Interestingly, Australia is home to many mucilage-producing Plantago species, most of which are underexplored and underutilised, but show remarkable gelling properties and hypoglycaemic potential(3). In this work, we compare structural and functional properties of fractionated DF from P. ovata, and two promising Australian native relatives, P. turrifera and P. drummondii, and their effect on enzymatic hydrolysis in potato starch gels. Using a 3-step fractionation method, we have separated distinct fractions and explored their individual properties(4). P. turrifera and P. drummondii have higher water absorbing capacity, DF yield, and viscosity compared to P. ovata. Monosaccharide composition of all three species is similar – they are highly substituted heteroxylans with minor pectic component. Notably, arabinose to xylose ratio in all species increases with further extraction steps, which is different from cereal arabinoxylans. In an attempt to explore impact of DF in starch-rich systems, we have fabricated DF-potato starch gels and measured enzymatic hydrolysis (with porcine pancreatic α-amylase), freeze-thaw stability, and colour change. Addition of DF reduced syneresis (water separation) during 15 day freeze-thaw cycle measurement, which can lead to prolonged storage stability and has positive implications for shelf life. Colour change was most noticeable when P. drumondii DF were added, while colour of P. ovata and P. turiferra DF gels was similar to control potato starch gel. Effects on α-amylase starch hydrolysis were significant as well, and depended on species and fractions. Certain DFs had impacts on constant k (speed of hydrolysis), while effects on the extent of hydrolysis are still being explored. In conclusion, utility of Australia native P. turrifera and P. drumondii DFs are evident when applied to starch gels, and should be further explored in food products such as bread to increase DF intake and possibly lower glycaemic index.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3