Tracers to investigate protein and amino acid metabolism in human subjects

Author:

Wagenmakers Anton J. M.

Abstract

Three tracer methods have been used to measure protein synthesis, protein breakdown and protein oxidation at whole-body level. The method using L-[1-13C]leucine is considered the method of reference. These methods have contributed greatly to the existing knowledge on whole-body protein turnover and its regulation by feeding, fasting, hormones and disease. How exercise and ingestion of mixed protein-containing meals affect whole-body protein metabolism is still open to debate, as there are discrepancies in results obtained with different tracers. The contribution of whole-body methods to the future gain of knowledge is expected to be limited due to the fact that most physiological disturbances have been investigated extensively, and due to the lack of information on the relative contribution of various tissues and proteins to whole-body changes. Tracer amino acid-incorporation methods are most suited to investigate these latter aspects of protein metabolism. These methods have shown that some tissues (liver and gut) have much higher turnover rates and deposit much more protein than others (muscle). Massive differences also exist between the fractional synthesis rates of individual proteins. The incorporation methods have been properly validated, although minor disagreements remain on the identity of the true precursor pool (the enrichment of which should be used in the calculations). Arterio-venous organ balance studies have shown that little protein is deposited in skeletal muscle following a protein-containing meal, while much more protein is deposited in liver and gut. The amount deposited in the feeding period in each of these tissues is released again during overnight fasting. The addition of tracers to organ balance studies allows the simultaneous estimation of protein synthesis and protein breakdown, and provides information on whether changes in net protein balance are caused primarily by a change in protein synthesis or in protein breakdown. In the case of a small arterio-venous difference in a tissue with a high blood flow, estimates of protein synthesis and breakdown become very uncertain, limiting the value of using the tracer. An additional measurement of the intracellular free amino acid pool enrichment allows a correction for amino acid recycling and quantification of the inward and outward transmembrane transport. However, in order to obtain reliable estimates of the intramuscular amino acid enrichment and, therefore, of muscle protein synthesis and breakdown in this so-called three-pool model, the muscle should be freeze-dried and the resulting fibres should be freed from connective tissue and small blood clots under a dissection microscope. Even when optimal precautions are taken, the calculations in these tracer balance methods use multiple variables and, therefore, are bound to lead to more variability in estimates of protein synthesis than the tracer amino acid incorporation methods. In the future, most studies should focus on the measurement of protein synthesis and breakdown in specific proteins in order to understand the mechanisms behind tissue adaptation in response to various stimuli (feeding, fasting, exercise, trauma, sepsis, disuse and disease). The tracer laboratories, therefore, should improve the methodology to allow the measurement of low tracer amino acid enrichments in small amounts of protein.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference80 articles.

1. An isotopic method for measurement of muscle protein fractional breakdown rate in vivo;Zhang;American Journal of Physiology,1996

2. Stimulation of protein synthesis in pig skeletal muscle by infusion of amino acids during constant insulin availability;Watt;American Journal of Physiology,1992

3. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise;Wagenmakers;American Journal of Physiology,1991

4. Preparation of CO2 from blood and protein-bound amino acid carboxyl groups for quantification and13C-isotope measurements

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3