Analogue and numerical modelling of shape fabrics: application to strain and flow determination in magmas

Author:

Arbaret Laurent,Fernandez Angel,Ježek Josef,Ildefonse Benoît,Launeau Patrick,Diot Hervé

Abstract

We summarise numerical and analogue models of shape fabrics, and discuss their applicability to the shape preferred orientation of crystals in magmas. Analyses of flow direction and finite strain recorded during the emplacement of partially crystallised magmas often employ the analytical and numerical solutions of the Jeffery's model, which describe the movement of noninteracting ellipsoidal particles immersed in a Newtonian fluid. Crystallising magmas, however, are considered as dynamic fluid systems in which particles nucleate and grow. Crystallisation during magma deformation leads to mechanical interactions between crystals whose shape distribution is not necessarily homogeneous and constant during emplacement deformation. Experiments carried out in both monoparticle and multiparticle systems show that shape fabrics begin to develop early in the deformation history and evolve according to the theoretical models for low-strain regimes. At large strains and increasing crystal content, the heterogeneous size distribution of natural crystals and contact interactions tend to generate steady-state fabrics with a lineation closely parallel to the direction of the magmatic flow. This effect has been observed in all threedimensional experiments with particles of similar size and for strain regimes of high vorticity. On the other hand, studies of feldspar megacryst sub-fabrics in porphyritic granites suggest that these record a significant part of the strain history. Thus, the fabric ellipsoid for megacrysts evolves closer to the strain ellipsoid than for smaller markers. This behaviour results from the fact that the matrix forms of the melt and smaller crystals behave like a continuous medium relative to the megacrysts. Consequently, in the absence of these markers, and because the fabric intensities of smaller particles such as biotite are stable and lower than predicted by the theory, finite strain remains indeterminate. In that case, strain quantification and geometry of the flow requires the addition of external constraints based on other structural approaches.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3