IDENTIFICATION OF OPTIMIZATION AREAS OF A TRANSTIBIAL PROSTHESIS THROUGH THE POTENTIALS OF ADDITIVE MANUFACTURING PROCESSES

Author:

Steffan Kay-Eric,Fett Michel,Kurth Daniel,Kirchner Eckhard

Abstract

AbstractAdditive manufacturing enables new possibilities for the design of end products. These are rooted in the potentials of the manufacturing technology, such as flexible, tool-free production. These potentials can be used for the economic and flexible production of customized products. To support the use of the potentials, a development method was created which identifies optimization areas within a product. Therefore, the complexity is reduced by using of product functions. Characteristic functions and structural configurations are used to identify optimization areas. This contribution describes the application of the new development method to an existing mechanical transtibial prosthesis. In doing so optimization areas are identified which may make use of the potentials provided by additive manufacturing. One area is the interface between the prosthesis and the ground. By analyzing walking environments and the gait cycle the need for walking assistance on deformable surfaces was identified. Significant improvements were achieved through a functional integrated, additive manufactured foot sleeve.

Publisher

Cambridge University Press (CUP)

Reference23 articles.

1. SwedeAmp—the Swedish Amputation and Prosthetics Registry: 8-year data on 5762 patients with lower limb amputation show sex differences in amputation level and in patient-reported outcome

2. Konzeptentwicklung und Gestaltung technischer Produkte

3. Sonova, (2020), 3D printing technology for improved hearing, Available at: https://www.sonova.com/en/story/innovation/3d-printing-technology-improved-hearing (7. December 2020).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3