AN AUTOMATED METHOD TO CONDUCT IMPORTANCE-PERFORMANCE ANALYSIS OF PRODUCT ATTRIBUTES FROM ONLINE REVIEWS - AN EXTENSION WITH A CASE STUDY

Author:

Lin Kangcheng,Kim Harrison

Abstract

AbstractWith the growth of online marketplaces and social media, product designers have been seeing an exponential growth of data available, which can serve as an extremely valuable source of information communicated from customers without geographical limitations. The data will reveal customers’ preferences, which can be expensive and slow to obtain via traditional methods such as survey and questionnaires. While existing methods in the literature have been proposed to extract product information and make inference from online data, they have limitations, especially in providing reliable results and in dealing with data sparsity. Therefore, this paper proposes a method to conduct an Important-performance analysis from online reviews. The major steps of this method involve using latent Dirichlet allocation (LDA) to identify product attributes, using IBM Watson Natural Language Understanding tool to perform aspect-based sentiment analysis, and using XGBoost model to infer product attribute importance from the collected dataset. In our case study, we have collected over 150,000 text reviews of more than 3,000 laptops from Amazon.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3