ANALYSIS OF FUNCTIONAL REFERENCE ARCHITECTURE THROUGH AN INDUSTRY LENS

Author:

Mactaggart Ivan Mervyn,Eckert Claudia,Lockett Helen

Abstract

AbstractThere is an inherent tension between functional descriptions of products and structural descriptions. Traditionally system architecture combine the two, by mapping system elements to functions. In this process fundamental decisions about the embodiment of a product are often taken without proper scrutiny. Axiomatic design advocates a zigzag between functional decomposition and system break down. While this approach makes sense for ab initio design these are rare and most products are developed incrementally., This paper takes up the idea of a functional reference architecture.Conventional functional modelling advocates a hierarchical decomposition into sub function. By contrast FRAs decompose function into function chain, i.e., dependent sequences of sub function required to carry out an overall function. This allows the identification of common sub-functions in different chains, and thereby generates a lattice structure of functions rather than a tree. This enables a detailed but solution neutral description of the product.This concept has attracted interest in industry but does not have many tools and methods to develop FRA. The paper discusses some of the areas that require research

Publisher

Cambridge University Press (CUP)

Reference34 articles.

1. Economic Analysis of Model-based Systems Engineering;Madni;Systems,2019

2. An Analysis of Functional Modelling Approaches Across Disciplines;Eisenbart;AI EDAM,2013

3. The coexistence of engineering meanings of function: four responses and their methodological implications;Vermaas;AI EDAM,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Guidelines for systematic functional decomposition in model-based systems engineering;2022 IEEE International Symposium on Systems Engineering (ISSE);2022-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3