DETECTION AND CLASSIFICATION OF SYMBOLS IN PRINCIPLE SKETCHES USING DEEP LEARNING

Author:

Bickel Sebastian,Schleich Benjamin,Wartzack Sandro

Abstract

AbstractData-driven methods from the field of Artificial Intelligence or Machine Learning are increasingly applied in mechanical engineering. This refers to the development of digital engineering in recent years, which aims to bring these methods into practice in order to realize cost and time savings. However, a necessary step towards the implementation of such methods is the utilization of existing data. This problem is essential because the mere availability of data does not automatically imply data usability. Therefore, this paper presents a method to automatically recognize symbols from principle sketches, which allows the generation of training data for machine learning algorithms. In this approach, the symbols are created randomly and their illustration varies with each generation. . A deep learning network from the field of computer vision is used to test the generated data set and thus to recognize symbols on principle sketches. This type of drawing is especially interesting because the cost-saving potential is very high due to the application in the early phases of the product development process.

Publisher

Cambridge University Press (CUP)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3