Abstract
AbstractFull-coverage pedestrian survey to record cultural features on unexplored archaeological landscapes is costly in terms of time, money, and personnel. Over the past two decades, researchers have implemented remote sensing and landscape data collection techniques using unmanned aerial vehicles (UAVs) to combat some of these burdens, but the initial cost of equipment, software, and processing power has hindered the ubiquitous implementation of UAV technology as an accessible companion tool to traditional archaeological survey. This article presents a free and open-source, technology-independent analytical framework for the collection and processing of UAV images to produce high-resolution digital terrain models limited only by the equipment available to the researcher. Results from the free and open-source protocol are directly compared to those produced using proprietary software to illustrate the capabilities of freely available data processing tools for UAV-collected images. By replicating the methods outlined here, researchers should be able to identify and target areas of interest to increase fieldwork efficiency, decrease costs of implementing this technology, and produce high-resolution digital terrain models to conduct spatial analyses that pursue a deeper understanding of cultural landscapes.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on segmentation algorithm of UAV remote sensing image based on deep learning;Fourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022);2023-02-23