Association between metabolic resistances to atrazine and mesotrione in a multiple-resistant waterhemp (Amaranthus tuberculatus) population

Author:

Jacobs Kip E,Butts-Wilmsmeyer Carrie J.,Ma Rong,O’Brien Sarah R.,Riechers Dean E.ORCID

Abstract

AbstractMetabolic resistances to atrazine (atz-R) and mesotrione (meso-R) occur in several waterhemp [Amaranthus tuberculatus (Moq.) Sauer] populations in the United States. Interestingly, although metabolic atz-R but mesotrione-sensitive A. tuberculatus populations have been reported, an Amaranthus population has not been confirmed as meso-R but atrazine-sensitive, implying an association between these traits. Experiments were designed to investigate whether the single gene conferring metabolic atz-R plays a role in meso-R. An F2 population was generated from a multiple herbicide–resistant A. tuberculatus population from McLean County, IL (MCR). A cross was made between a known meso-R male clone (MCR-6) and a herbicide-sensitive female clone from Wayne County, IL (WCS-2) to develop an F1 population. Survival of MCR-6 plants following atrazine POST treatment (14.4 kg ha−1) indicated the male parent was homozygous atz-R. F1 plants were intermated to obtain a segregating pseudo-F2 population. Dose–response and metabolic studies conducted with mesotrione using F1 plants indicated intermediate biomass reductions and metabolic rates compared with MCR-6 and WCS. F2 plants were initially treated with either mesotrione (260 g ha−1) or atrazine (2 kg ha−1) POST, and after 21 d of recovery, vegetative clones from surviving resistant plants were subsequently treated with the other herbicide. When mesotrione was applied first, the meso-R frequency was 8.2%, and when atrazine was applied first, the atz-R frequency was 75%. However, the meso-R frequency increased to 16.5% following preselection for atz-R, and 100% of surviving meso-R plants were atz-R. Our findings indicate that the gene conferring metabolic atz-R is also involved with the meso-R trait within the population tested.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3