Mechanisms in noise-induced permanent hearing loss: an evoked otoacoustic emission and auditory brainstem response study

Author:

Xu Zheng-Min,Vinck Bart,De Vel Eddy,van Cauwenberge Paul

Abstract

AbstractIn this study 22 patients (44 ears) with noise-induced permanent hearing loss were audiologically evaluated using transient-evoked otoacoustic emissions (TEOAE) and auditory brain-stem response (ABR). Twenty-one normal subjects (42 ears) without exposure to occupational noise were used as controls. Based upon the hearing loss at 4, 3, 2 and 1 kHz on the pure-tone audiogram, they were classified into four groups. In group 1 (eight ears), emissions were present in all ears but their TEOAE-noise level and their reproducibility (percentage) proved to be weak. The auditory brain-stem response (ABR) indicated that the I/V amplitude ratio, the latency values of wave V and the I–V intervals fell within the normal range in all ears. In Group 2 (14 ears), 40 per cent had no emissions, whereas the remaining ears showed weak emissions. The ABR revealed that in all ears the I/V amplitude ratio became small while wave V peak latency as well as I–V intervals were within the normal range. In Group 3 (10 ears), emissions were absent in 50 per cent, while in the other ears the emissions were very weak. The ABR revealed that the I/V amplitude ratio, which could be calculated in the 60 per cent in which wave I was present, was smaller than in Group 2. Wave V latency as well as I–V intervals were within the normal range. In Group 4 (12 ears), none of the ears showed emissions. The ABR indicated that the I/V amplitude ratio was much smaller when wave I was present (27 per cent) as well as I–V interval values being within the normal range. Wave V absolute latency value (δV index) indicated a positive index in 17 per cent of this group (two ears) when wave I was absent. In the present study a dynamic process from cochlear outer hair cells to cochlear neurons was seen, correlating with an increasing hearing loss.

Publisher

Cambridge University Press (CUP)

Subject

Otorhinolaryngology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3