A method to retrieve the spectral complex refractive index and single scattering optical properties of dust deposited in mountain snow

Author:

SKILES S. McKENZIE,PAINTER THOMAS,OKIN GREGORY S.

Abstract

ABSTRACTDust deposition to snow can have regionally important climatic and hydrologic impacts resulting from direct reduction of surface albedo and indirectly from the initiation of snow albedo feedbacks. Modeling the radiative impacts of dust deposited in snow requires knowledge of the optical properties of both components. Here we present an inversion technique to retrieve the effective optical properties of dust deposited in mountain snow cover from measurements of hemispherical dust reflectance and particle size distributions using radiative transfer modeling. First, modeled reflectance is produced from single scattering properties modeled with Mie theory for a specified grain size distribution over a range of values for the imaginary part of the complex refractive index (k = 0.00001–0.1). Then, a multi-step look-up table process is employed to retrieve kλ and single scattering optical properties by matching measured to modeled reflectance across the shortwave and near infrared. The real part of the complex refractive index, n, for dust aerosols ranges between 1.5 and 1.6 and a sensitivity analysis shows the method is relatively insensitive to the choice of n within this range, 1.525 was used here. Using the values retrieved by this method to update dust optical properties in a snow + aerosol radiative transfer model reduces errors in springtime albedo modeling by 50–70%.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3