Crossover scaling phenomena for glaciers and ice caps

Author:

BAHR DAVID B.,PFEFFER W. TAD

Abstract

ABSTRACTWhile the terms ‘glacier’ and ‘ice cap’ have distinct morphological meanings, no easily defined boundary or transition distinguishes one from the other. Despite this, the exponent of the power law function relating volume to surface area differs sharply for glaciers and ice caps, suggesting a fundamental distinction beyond a smoothly transitioning morphology. A standard percolation technique from statistical physics is used to show that valley glaciers are in fact differentiated from ice caps by an abrupt geometric transition. The crossover is a function of increasing glacier thickness, but it owes its existence more to the nature of the underlying bedrock topography than to specifics of glacier mechanics: the crossover is caused by a switch from directed flow that is constrained by surrounding bedrock topography to unconstrained radial flow of thicker ice that has subsumed the topography. The crossover phenomenon is nonlinear and rapid so that few if any glaciers will have geometries or dynamics that blend the two extremes. The exponents of scaling relationships change abruptly at the crossover from one regime to another; in particular, the volume/area scaling exponent will switch from γ = 1.375 for glaciers to γ = 1.25 for ice caps, with few, if any, ice bodies having exponents that fall between these values.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3