The use of autoencoders for training neural networks with mixed categorical and numerical features

Author:

Delong Łukasz,Kozak Anna

Abstract

AbstractWe focus on modelling categorical features and improving predictive power of neural networks with mixed categorical and numerical features in supervised learning tasks. The goal of this paper is to challenge the current dominant approach in actuarial data science with a new architecture of a neural network and a new training algorithm. The key proposal is to use a joint embedding for all categorical features, instead of separate entity embeddings, to determine the numerical representation of the categorical features which is fed, together with all other numerical features, into hidden layers of a neural network with a target response. In addition, we postulate that we should initialize the numerical representation of the categorical features and other parameters of the hidden layers of the neural network with parameters trained with (denoising) autoencoders in unsupervised learning tasks, instead of using random initialization of parameters. Since autoencoders for categorical data play an important role in this research, they are investigated in more depth in the paper. We illustrate our ideas with experiments on a real data set with claim numbers, and we demonstrate that we can achieve a higher predictive power of the network.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Finance,Accounting

Reference33 articles.

1. Hespe, N. (2020) Building autoencoders on sparse, one-hot encoded data. https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7.

2. Extracting and composing robust features with denoising autoencoders

3. Grari, V. , Charpentier, A. , Lamprier, S. and Detyniecki, M. (2022) A fair pricing model via adversarial learning. https://arxiv.org/abs/2202.12008.

4. Lei, L. , Petterson, A. and White, M. (2018) Supervised autoencoders: Improving generalization performance with unsupervised regularizers. Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 107–117.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boarding for ISS: Imbalanced Self-Supervised Discovery of a Scaled Autoencoder for Mixed Tabular Datasets;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Enhancing actuarial non-life pricing models via transformers;European Actuarial Journal;2024-06-12

3. Smoothness and monotonicity constraints for neural networks using ICEnet;Annals of Actuarial Science;2024-04-01

4. A representation-learning approach for insurance pricing with images;ASTIN Bulletin;2024-03-15

5. High-cardinality categorical covariates in network regressions;Japanese Journal of Statistics and Data Science;2024-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3