Premium control with reinforcement learning

Author:

Palmborg LinaORCID,Lindskog Filip

Abstract

AbstractWe consider a premium control problem in discrete time, formulated in terms of a Markov decision process. In a simplified setting, the optimal premium rule can be derived with dynamic programming methods. However, these classical methods are not feasible in a more realistic setting due to the dimension of the state space and lack of explicit expressions for transition probabilities. We explore reinforcement learning techniques, using function approximation, to solve the premium control problem for realistic stochastic models. We illustrate the appropriateness of the approximate optimal premium rule compared with the true optimal premium rule in a simplified setting and further demonstrate that the approximate optimal premium rule outperforms benchmark rules in more realistic settings where classical approaches fail.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Finance,Accounting

Reference31 articles.

1. Chong, W. F. , Cui, H. and Li, Y. (2021) Pseudo-model-free hedging for variable annuities via deep reinforcement learning. arXiv preprint arXiv:2107.03340.

2. Deep hedging

3. An analysis of temporal-difference learning with function approximation

4. Value Function Approximation in Reinforcement Learning Using the Fourier Basis

5. Sutton, R.S. , McAllester, D. , Singh, S. and Mansour, Y. (1999) Policy gradient methods for reinforcement learning with function approximation. Advances in Neural Information Processing Systems 12.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3