Author:
DE MARCHI SCOTT,GELPI CHRISTOPHER,GRYNAVISKI JEFFREY D.
Abstract
Beck, King, and Zeng (2000) offer both a sweeping critique of the quantitative security studies field and a bold new direction for future research. Despite important strengths in their work, we take issue with three aspects of their research: (1) the substance of the logit model they compare to their neural network, (2) the standards they use for assessing forecasts, and (3) the theoretical and model-building implications of the nonparametric approach represented by neural networks. We replicate and extend their analysis by estimating a more complete logit model and comparing it both to a neural network and to a linear discriminant analysis. Our work reveals that neural networks do not perform substantially better than either the logit or the linear discriminant estimators. Given this result, we argue that more traditional approaches should be relied upon due to their enhanced ability to test hypotheses.
Publisher
Cambridge University Press (CUP)
Subject
Political Science and International Relations,Sociology and Political Science
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献