Unsteady flow behaviour of multi-rotors in ground proximity

Author:

Dekker Hasse N.J.ORCID,Baars Woutijn J.ORCID,Scarano FulvioORCID,Tuinstra Marthijn,Ragni Daniele

Abstract

The unsteady flow behaviour of two side-by-side rotors in ground proximity is experimentally investigated. The rotors induce a velocity distribution interacting with the ground causing the radial expansion of the rotor wakes. In between the rotors, an interaction of the two wakes takes place, resulting in an upward flow similar to a fountain. Two types of flow topologies are examined and correspond to two different stand-off heights between the rotors and the ground: the first one where the height of the fountain remains below the rotor disks, and a second one where it emerges above, being re-ingested. The fountain unsteadiness is shown to increase when re-ingestion takes place, determining a location switch from one rotor disk to the other, multiple times during acquisition. Consequently, variable inflow conditions are imposed on each of the two rotors. The fountain dynamics is observed at a frequency that is about two orders of magnitude lower than the blade passing frequency. The dominant characteristic time scale is linked to the flow recirculation path, relating this to system parameters of thrust and ground stand-off height. The flow field is analysed using proper orthogonal decomposition, in which coupled modes are identified. Results from the modal analysis are used to formulate a simple dynamic flow model of the re-ingestion switching cycle.

Funder

H2020 Societal Challenges

Publisher

Cambridge University Press (CUP)

Subject

Fluid Flow and Transfer Processes,Engineering (miscellaneous),Aerospace Engineering,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Noise Generation Mechanisms of Side-by-Side Rotors Operating Near Ground;30th AIAA/CEAS Aeroacoustics Conference (2024);2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3