Dynamics of cavity structures and wall-pressure fluctuations associated with shedding mechanism in unsteady sheet/cloud cavitating flows

Author:

Wang ChangchangORCID,Zhang MindiORCID

Abstract

The physics and mechanism of sheet/cloud cavitation in a convergent–divergent channel are investigated using synchronized dynamic surface pressure measurement and high-speed imaging in a water tunnel to probe the cavity shedding mechanism. Experiments are conducted at a fixed Reynolds number ofRe = 7.8 × 105for different values of the cavitation numberσbetween 1.20 and 0.65, ranging from intermittent inception cavitation, sheet cavitation to quasi-periodic cloud cavitation. Two distinct cloud cavitation regimes, i.e. the re-entrant jet and shockwave shedding mechanism, are observed, accompanied by complex flow phenomenon and dynamics, and are examined in detail. An increase in pressure fluctuation intensity at the numbers 3 and 4 transducer locations are captured during the transition from re-entrant jet to shockwave shedding mechanism. The spectral content analysis shows that, in cloud cavitation, several frequency peaks are identified with the dominant frequency caused by the large-scale cavity shedding process and the secondary frequency related to re-entrant jet/shockwave dynamics. Statistical analysis based on defined grey level profiles reveals that, in cloud cavitation, the double-peak behaviours of the probability density functions with negative skewness values are found to be owing to the interactions of the re-entrant jet/shockwave with cavities in the region of 0.25 ~ 0.65 mean cavity length (Lc). In addition, multi-scale proper orthogonal decomposition analysis with an emphasis on the flow structures in the region of 0.25 ~ 0.65Lcreveals that, under the shockwave shedding mechanism, both the re-entrant jet and shockwave are captured and their interactions are responsible for the dynamics and statistics of cloud shedding process.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Cambridge University Press (CUP)

Subject

Fluid Flow and Transfer Processes,Engineering (miscellaneous),Aerospace Engineering,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3