Hybrid axisymmetric model for forced heave of a shallowly submerged cylindrical wave energy converter

Author:

McCauley GuyORCID,Wolgamot Hugh,Draper Scott,Orszaghova JanaORCID

Abstract

Shallowly submerged oscillating structures may be found in wave energy devices or semi-submersible vessels. Predicting the force on such structures is critical for design purposes, but complicated due to nonlinear phenomena which can occur in shallow water, including wave breaking and bore formation. Such effects are particularly important around the first ‘resonance’ frequency of the fluid on top of the device, where linear theory predicts large flows on/off the cylinder and corresponding surface elevations and forces. In an effort to create a reliable and efficient model to predict the hydrodynamic force on a shallowly submerged truncated vertical cylinder, an axisymmetric nonlinear hybrid model is developed for forced heave oscillations. The flow above the cylinder is modelled using the nonlinear shallow water equations, and linear potential flow theory is used in the surrounding fluid. The model is compared with experimental results for forced heave oscillations and performs well for predicting the heave force. It is then used to examine linearised heave force for increasing amplitudes of (prescribed) harmonic heave motion. There is a significant reduction in the peaks of radiation damping and added mass coefficients with increasing amplitude, and associated shifts in the frequencies of the peaks.

Funder

Australian Research Council

Publisher

Cambridge University Press (CUP)

Subject

Fluid Flow and Transfer Processes,Engineering (miscellaneous),Aerospace Engineering,Biomedical Engineering

Reference33 articles.

1. CFD Analysis of Waves Over a Submerged Cylinder in Close Proximity of the Free Surface

2. Forces on Submerged Cylinders Oscillating near a Free Surface

3. Rafiee, A. , & Fievez, J. (2015). Numerical prediction of extreme loads on the CETO wave energy converter. In Proceedings of the 11th European wave and tidal energy conference, Nantes, France.

4. 3-D seakeeping analysis with water on deck and slamming. Part 1: Numerical solver

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3