Wing rock mode and its mechanism of a flying-wing aircraft

Author:

Li XiaoORCID,Feng Li-HaoORCID,Wang Qi-Ming

Abstract

The flying wing is an aerodynamic configuration with high efficiency, but the lack of lateral-directional stability has always been an obstacle that limits its application. In this study, the wing rock motion of a 65° swept flying-wing aircraft is studied via wind tunnel experiments and numerical simulations at a low speed, and various unsteady motion phenomena are focused on. Both the experimental and numerical results show that the flying wing has a bicyclic ${C_l}$ $\phi $ hysteresis loop during its wing rock, different from the slender delta wing, rectangular wing, generic aircraft configuration, etc., which have a tricyclic hysteresis loop. This form of hysteresis loop implies a different energy exchange manner of the flying wing in the wing rock oscillation. Further analysis shows that the flying wing forms a unilateral leading-edge vortex (LEV) under a high roll angle, with its wing rock oscillation driven by the ‘vortex–shear-layer’ structure, which is different from that of slender and non-slender delta wings. Moreover, the quantitative dynamic hysteresis characteristics of the LEV's strength and location for the flying wing and the slender delta wing are also different. These results have proven the existence of a wing rock mode which is different from previous investigations, which enriches the understanding of self-induced oscillation. Present discoveries are also conducive to the aerodynamic shape design and flight manipulation of a flying-wing aircraft, which is significant for its wider application.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Fluid Flow and Transfer Processes,Engineering (miscellaneous),Aerospace Engineering,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3