Proper orthogonal decomposition modal analysis in a baffled stirred tank: a base tool for the study of structures

Author:

Arosemena Arturo A.ORCID,Solsvik JannikeORCID

Abstract

Proper orthogonal decomposition (POD) is applied to three-dimensional (3-D) velocity fields collected from large-eddy simulations (LES) of a baffled stirred tank. In the LES, the tank operates with a Rushton-type impeller under turbulent conditions (at least in the near-impeller region) and the working fluid exhibits either Newtonian or shear-thinning rheology. The most energetic POD modes are analysed, and a POD reconstruction based on the higher modes is proposed to approximate the fluctuating component of the velocity field. Subsequently, the POD reconstruction is used to identify vortical structures and characterise them in terms of their shape. The structures are identified by considering a frame-invariant formulation of a popular, Eulerian, local-region-type method: the $Q$ -criterion. Statistics of shape-related parameters are then investigated to address the morphology of the structures. It is found that: (i) regardless of the working fluid rheology, it seems feasible to decompose the 3-D field into its mean, most energetic periodic and fluctuating components using POD, allowing, for instance, reduced-order modelling of the energetic periodic motions for mixing enhancement purposes, and (ii) vortical structures related to turbulence are mostly tubular. Finding (ii) implies that, as starting point, phenomenological models for the interaction between fluid particles (drops and bubbles) and vortices should consider the latter as cylindrical structures rather than of spherical shape, as classically assumed in these models.

Funder

Norges Forskningsråd

Publisher

Cambridge University Press (CUP)

Subject

Fluid Flow and Transfer Processes,Engineering (miscellaneous),Aerospace Engineering,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3