Author:
IANOVSKI EGOR,MILLER RUSSELL,NG KENG MENG,NIES ANDRÉ
Abstract
AbstractWe study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relationsR,S, a componentwise reducibility is defined byR≤S⇔ ∃f∀x, y[x R y↔f(x)S f(y)].Here,fis taken from a suitable class of effective functions. For us the relations will be on natural numbers, andfmust be computable. We show that there is a${\rm{\Pi }}_1^0$-complete equivalence relation, but no${\rm{\Pi }}_k^0$-complete fork≥ 2. We show that${\rm{\Sigma }}_k^0$preorders arising naturally in the above-mentioned areas are${\rm{\Sigma }}_k^0$-complete. This includes polynomial timem-reducibility on exponential time sets, which is${\rm{\Sigma }}_2^0$, almost inclusion on r.e. sets, which is${\rm{\Sigma }}_3^0$, and Turing reducibility on r.e. sets, which is${\rm{\Sigma }}_4^0$.
Publisher
Cambridge University Press (CUP)
Reference30 articles.
1. [3] Andrews Uri , Lempp Steffen , Miller Joseph S. , Ng Keng Meng , SanMauro Luca , and Sorbi Andrea , Universal computably enumerable equivalence relations , submitted.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献