IMPLICATIONS OF SINGLE-STEP GRAPHITIZATION FOR RECONSTRUCTING LATE HOLOCENE RELATIVE SEA-LEVEL USING RADIOCARBON-DATED ORGANIC COASTAL SEDIMENT

Author:

Sefton Juliet PORCID,Kemp Andrew C,Elder Kathryn LORCID,Hansman Roberta L,Roberts Mark L

Abstract

ABSTRACTLate Holocene relative sea-level reconstructions are commonly generated using proxies preserved in salt-marsh and mangrove sediment. These depositional environments provide abundant material for radiocarbon dating in the form of identifiable macrofossils (salt marshes) and bulk organic sediment (mangroves). We explore if single-step graphitization of these samples in preparation for radiocarbon dating can increase the number and temporal resolution of relative sea-level reconstructions without a corresponding increase in cost. Dating of salt-marsh macrofossils from the northeastern United States and bulk mangrove sediment from the Federated States of Micronesia indicates that single-step graphitization generates radiocarbon ages that are indistinguishable from replicates prepared using traditional graphitization, but with a modest increase in error (mean/maximum of 6.25/15 additional 14C yr for salt-marsh macrofossils). Low 12C currents measured on bulk mangrove sediment following single-step graphitization likely render them unreliable despite their apparent accuracy. Simulated chronologies for six salt-marsh cores indicate that having twice as many radiocarbon dates (since single-step graphitization costs ∼50% of traditional graphitization) results in narrower confidence intervals for sample age estimated by age-depth models when the additional error from the single-step method is less than ∼50 14C yr (∼30 14C yr if the chronology also utilizes historical age markers). Since these thresholds are greater than our empirical estimates of the additional error, we conclude that adopting single-step graphitization for radiocarbon measurements on plant macrofossils is likely to increase precision of age-depth models by more than 20/10% (without/with historical age markers). This improvement can be implemented without additional cost.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sedimentary indicators of relative sea-level changes—Low energy;Reference Module in Earth Systems and Environmental Sciences;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3