Modeling post-Pleistocene megafauna extinctions as complex social-ecological systems

Author:

Kopels Miriam C.,Ullah Isaac I.ORCID

Abstract

Abstract The role of human hunting behavior versus climate change in the mass extinction of megafauna during the Late Quaternary is much debated. To move beyond monocausal arguments, we treat human–megafauna–environment relationships as social–ecological systems from a complex adaptive systems perspective, to create an agent-based model that tests how human hunting may interact with environmental stress and animal life history to affect the probability of extinction. Using the extinction of Syncerus antiquus in South Africa at 12–10 ka as a loose inspirational case study, we parameterized a set of experiments to identify cross-feedbacks among environmental dynamics, prey life history, and human hunting pressure that affect extinction probability in a non-linear way. An important anthropogenic boundary condition emerges when hunting strategies interrupt prey animal breeding cycles. This effect is amplified in patchy, highly seasonal environments to increase the chances of extinction. This modeling approach to human behavior and biodiversity loss helps us understand how these types of cross-feedback effects and boundary conditions emerge as system components interact and change. We argue that this approach can help translate archaeological data and insight about past extinction for use in understanding and combating the current mass extinction crisis.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3