Fitting Logistic IRT Models: Small Wonder

Author:

García-Pérez Miguel A.

Abstract

State-of-the-art item response theory (IRT) models use logistic functions exclusively as their item response functions (IRFs). Logistic functions meet the requirements that their range is the unit interval and that they are monotonically increasing, but they impose a parameter space whose dimensions can only be assigned a metaphorical interpretation in the context of testing. Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. This article illustrates how mechanical adoption of off-the-shelf logistic functions as IRFs for IRT models can result in off-the-shelf parameter estimates and fits to data. The results of a simulation study are presented, which show that logistic IRT models can fit a set of data generated by IRFs other than logistic functions just as well as they fit logistic data, even though the response processes and parameter spaces involved in each case are substantially different. An explanation of why logistic functions work as they do is offered, the theoretical and practical consequences of their behavior are discussed, and a testable alternative to logistic IRFs is commented upon.

Publisher

Cambridge University Press (CUP)

Subject

Linguistics and Language,General Psychology,Language and Linguistics

Reference87 articles.

1. Zin T.T. (1992). Comparing 12 finite state models of examinee performance on multiple-choice tests. Ph.D. Dissertation. Virginia Polytechnic Institute and State University.

2. A comparison of the efficiency and accuracy of BILOG and LOGIST

3. Using Simulation Results to Choose a Latent Trait Model

4. Algorithm AS 183: An Efficient and Portable Pseudo-Random Number Generator

5. Item Response Theory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3