Author:
Bujalance E.,Costa A. F.,Gromadzki G.,Singerman D.
Abstract
In this paper we consider complex doubles of compact Klein surfaces that have large automorphism groups. It is known that a bordered Klein surface of algebraic genus g > 2 has at most 12(g − 1) automorphisms. Surfaces for which this bound is sharp are said to have maximal symmetry. The complex double of such a surface X is a compact Riemann surface X+ of genus g and it is easy to see that if G is the group of automorphisms of X then C2 × G is a group of automorphisms of X+. A natural question is whether X+ can have a group that strictly contains C2 × G. In [8] C. L. May claimed the following interesting result: there is a unique Klein surface X with maximal symmetry for which Aut X+ properly contains C2 × Aut X (where Aut X+ denotes the group of conformal and anticonformal automorphisms of X+).
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献