A Simple proof of the Goldberg–Straus theorem on numerical radii

Author:

Tam Bit-Shun

Abstract

Let Mn(ℂ) be the algebra of n × n complex matrices, and let be its unitary group. Given A, B ε Mn(ℂ), the A-numerical radius of B is the nonnegative quantityIn particular, for A = diag(1, 0, …, 0) it reduces to the classical numerical radius r(B) = max||x*Bx|:x*x = 1}. In [1] Goldberg and Straus proved that rA is a generalized matrix norm (i.e. a positive definite seminorm) on Mn(ℂ) if and only if A is nonscalar and tr A ≠ 0. This result agrees with the well-known fact that the classical numerical radius r is a generalized matrix norm. The nontrivial part of the proof is to show that if A is nonscalar and tr A ≠ 0 then rA is positive definite; that is, for any B ε Mn(ℂ), tr(AU*BU) = 0 for all U ε implies B = 0. The proof given in [1] is computational and involves the use of differentiation on matrices. Later Marcus and Sandy [2] gave three elementary proofs of the result. Their proofs are still computational in nature and two of them need knowledge of multilinear algebra.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference4 articles.

1. 4. Tam T. Y. , On the generalized radial matrices and a conjecture of Marcus and Sandy, Linear and Multilinear Algebra, to appear.

2. Three elementary proofs of the goldberg-straus theorem on numerical radii

3. Norm properties of C-numerical radii

4. 3. Tam B. S. , The action of unitary transforms of a matrix on linear subspaces, submitted for publication.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear images of joint unitary orbits of Hermitian matrices;Linear Algebra and its Applications;2018-04

2. Lieb functions and m-positivity of norms;Linear Algebra and its Applications;2014-09

3. Conditions for Linear Dependence of Two Operators;Topics in Operator Theory;2010

4. Inclusion Regions for Numerical Ranges and Linear Preservers;Linear and Multilinear Algebra;2004-05

5. Span of the orthogonal orbit of real matrices;Linear and Multilinear Algebra;2001-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3