Abstract
For a single space curve (that is, a smooth curve embedded in ℝ3) much geometrical information is contained in the dual and the focal set of the curve. These are both (singular) surfaces in ℝ3, the dual being a model of the set of all tangent planes to the curve, and the focal set being the locus of centres of spheres having at least 3-point contact with the curve. The local structures of the dual and the focal set are (for a generic curve) determined by viewing them as (respectively) the discriminant of a family derived from the height functions on the curve, and the bifurcation set of the family of distance-squared functions on the curve. For details of this see for example [6, pp. 123–8].
Publisher
Cambridge University Press (CUP)
Reference8 articles.
1. Wave front evolution and equivariant Morse lemma
2. Catastrophe Theory
3. Projectively dual space curves and Legendre singularities (Russian);Shcherbak;Trudy Tbiliss. Univ.,1982
4. Outlines and Their Duals
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献