Author:
van Huynh Dinh,Dung Nguyen V.
Abstract
Throughout this paper we consider associative rings with identity and assume that all modules are unitary. As is well known, cyclic modules play an important role in ring theory. Many nice properties of rings can be characterized by their cyclic modules, even by their simple modules. See, for example, [2], [3], [6], [7], [13], [14], [15], [16], [18], [21]. One of the most important results in this direction is the result of Osofsky [14, Theorem] which says: a ring R is semisimple (i.e. right artinian with zero Jacobson radical) if and only if every cyclic right R-module is injective. The other one is due to Vamos [18]: a ring R is right artinian if and only if every cyclic right R-module is finitely embedded.
Publisher
Cambridge University Press (CUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献