Embedding inverse semigroups in wreath products

Author:

Houghton C. H.

Abstract

Any extension of a group A by a group B can be embedded in their wreath product A Wr B. Here we consider generalizations of this result for inverse semigroups.Suppose S is an inverse semigroup and ρ0 is a congruence on S. We put T = S0 and denote the natural map from S to T by ρ. The kernel of ρ is the inverse image ETρ−1 of the semilattice ET of idempotents of T. First we show that if each ρ0-class of idempotents of S is inversely well-ordered, then S can be embedded in K Wr T, the standard wreath product of K and T. In general, not all elements of K Wr T have inverses. However, we can define a wreath product W(K, T) which is an inverse semigroup and which contains S when the previous condition holds. If ρ0 is idempotent-separating and S is 0-bisimple, K is the union of zero and a family of isomorphic groups. In this case, we can replace K by a single component group G of K, augmented by zero, and show that S can be embedded in W(G0, T). These results are analogous to the extension theories of D'Alarcao [1] and Munn [3] and they give conditions under which all inverse semigroup extensions of an inverse semigroup A by an inverse semigroup T are contained in a semigroup with structure depending only on A and T.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference6 articles.

1. The Algebraic Theory of Semigroups, Volume I

2. 6. Reilly N. R. , Enlarging the Munn representation, submitted to J. Austral. Math. Soc.

3. 0-Bisimple inverse semigroups

4. Idempotent-Separating Extensions Of Inverse Semigroups

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3