Bifree objects in e-varieties of strict orthodox semigroups and the lattice of strict orthodox *-semigroup varieties

Author:

Auinger Karl

Abstract

For regular semigroups, the appropriate analogue of the concept of a variety seems to be that of an e(xistence)-variety, developed by Hall [6,7,8]. A class V of regular semigroups is an e-variety if it is closed under taking direct products, regular subsemigroups and homomorphic images. For orthodox semigroups, this concept has been introduced under the term “bivariety” by Kaďourek and Szendrei [12]. Hall showed that the collection of all e-varieties of regular semigroups forms a complete lattice under inclusion. Further, he proved a Birkhoff-type theorem: each e-variety is determined by a set of identities. For e-varieties of orthodox semigroups a similar result has been proved by Kaďourek and Szendrei. At variance with the case of varieties, prima facie the free objects in general do not exist for e-varieties. For instance, there is no free regular or free orthodox semigroup. This seems to be true for most of the naturally appearing e-varieties (except for cases of e-varieties which coincide with varieties of unary semigroups such as the classes of all inverse and completely regular semigroups, respectively). This is true if the underlying concept of free objects is denned as usual. Kaďourek and Szendrei adopted the definition of a free object according to e-varieties of orthodox semigroups by taking into account generalized inverses in an appropriate way. They called such semigroups bifree objects. These semigroups satisfy the properties one intuitively expects from the “most general members” of a given class of semigroups. In particular, each semigroup in the given class is a homomorphic image of a bifree object, provided the bifree objects exist on sets of any cardinality. Concerning existence, Kaďourek and Szendrei were able to prove that in any class of orthodox semigroups which is closed under taking direct products and regular subsemigroups, all bifree objects exist and are unique up to isomorphism. Further, similar to the case of varieties, there is an order inverting bijection between the fully invariant congruences on the bifree orthodox semigroup on an infinite set and the e-varieties of orthodox semigroups. Recently, Y. T. Yeh [22] has shown that suitable analogues to free objects exist in an e-variety V of regular semigroups if and only if all members of V are either E-solid or locally inverse.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference22 articles.

1. Free *-orthodox semigroups;Szendrei;Simon Stevin,1985

2. A new interpretation of free orthodox and generalized inverse *-semigroups

3. 22. Yeh Y. T. , The existence of e-free objects in e-varieties of regular semigroups, Int. J. Alg. Comput. (to appear).

4. Regular semigroups satisfying certain conditions on idempotents and ideals

5. Free Objects in Certain Varieties of Inverse Semigroups

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3