Characterization of affine ruled surfaces

Author:

Jelonek Włodzimierz

Abstract

The aim of this paper is to give certain conditions characterizing ruled affine surfaces in terms of the Blaschke structure (∇, h, S) induced on a surface (M, f) in ℝ3. The investigation of affine ruled surfaces was started by W. Blaschke in the beginning of our century (see [1]). The description of affine ruled surfaces can be also found in the book [11], [3] and [7]. Ruled extremal surfaces are described in [9]. We show in the present paper that a shape operator S is a Codazzi tensor with respect to the Levi-Civita connection ∇ of affine metric h if and only if (M, f) is an affine sphere or a ruled surface. Affine surfaces with ∇S = 0 are described in [2] (see also [4]). We also show that a surface which is not an affine sphere is ruled iff im(S - HI) =ker(S - HI) and ket(S - HI) ⊂ ker dH. Finally we prove that an affine surface with indefinite affine metric is a ruled affine sphere if and only if the difference tensor K is a Codazzi tensor with respect to ∇.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ruled surfaces with constant terms in the relative Theorema Egregium;Journal of Mathematical Analysis and Applications;2011-08

2. Blaschke hypersurfaces with symmetric shape operator;Acta Mathematica Sinica, English Series;2011-07-15

3. Hypersurfaces with parallel difference tensor;Japanese journal of mathematics. New series;1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3