Abstract
Since the pioneering work of W. G. Bade [3, 4] a great deal of work has been done on bounded Boolean algebras of projections on a Banach space ([11, XVII.3.XVIII.3], [21, V.3], [16], [6], [12], [13], [14], ]17], [18], [23], [24]). Via the Stone representation space of the Boolean algebra, the theory can be studied through Banach modules over C(K), where K is a compact Hausdorff space. One of the key concepts in the theory is the notion of Bade functionals. If X is a Banach C(K)-module and x ε X, then a Bade functional of x with respect to C(K) is a continuous linear functional α on X such that, for each a in C(K) with a ≥ 0, we have(i) α (ax) ≥0,(ii) if α (ax) = 0, then ax = 0.
Publisher
Cambridge University Press (CUP)
Reference24 articles.
1. Cyclic Banach spaces and Banach lattices;Veksler;Soviet Math. Dokl.,1973
2. On Boolean algebras of projections and scalar-type spectral operators
3. Classical Banach Spaces II
4. Bade functionals;Gillespie;Proc. Roy. Irish Acad.,1981
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献