Abstract
Let H be a complex Hilbert space. For any operator (bounded linear transformation) T on H, we denote the spectrum of T by σ(T). Let T = (T1, …, Tn) be an n-tuple of commuting operators on H. Let Sp(T) be the Taylor joint spectrum of T. We refer the reader to [8] for the definition of Sp(T). A point v = (v1, …, vn) of ℂn is in the joint approximate point spectrum σπ(T) of T if there exists a sequence {xk} of unit vectors in H such that.A point v = (v1, …, vn) of ℂn is in the joint approximate compression spectrum σs(T) of T if there exists a sequence {xk} of unit vectors in H such thatA point v=(v1, …, vn) of ℂn is in the joint point spectrum σp(T) of T if there exists a non-zero vector x in H such that (Ti-vi)x = 0 for all i, 1 ≤ j ≤ n.
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Taylor and Xia spectra of p-hyponormal n-tuples;Integral Equations and Operator Theory;2000-12
2. On the spectrum of n-tuples of p-hyponormal operators;Glasgow Mathematical Journal;1998-03
3. Semi-normal operators on uniformly smooth Banach spaces;Glasgow Mathematical Journal;1990-09
4. On the spectrum of hyponormal operators;Integral Equations and Operator Theory;1988-07
5. Hyponormal Pairs of Commuting Operators;Contributions to Operator Theory and its Applications;1988