Abstract
LetSbe an inverse semigroup with semilattice of idempotentsE, and letρbe a congruence onS. Thenρis said to beidempotent-determined[2], or I.D. for short, if (a, b) ∈ р anda∈Eimply thatb∈E. If, further,ρis a group congruence, then clearlyρis the minimum group congruence onS, and in this caseSis said to beproper[8]. LetT=S/ρ.
Publisher
Cambridge University Press (CUP)
Reference9 articles.
1. Completions, translational hulls, and ideal extensions of inverse semigroups;Schein;Czech. Math. J.,1973
2. Inverse semigroups of partial transformations and𝜃-classes
3. 6. O'Carroll L. , Embedding theorems for proper inverse semigroups, J. of Algebra; submitted.
4. A class of congruences on a posemigroup
5. 3. McAlister D. B. , Groups, semilattices and inverse semigroups II, Trans. Amer. Math. Soc.; to appear.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献