Abstract
Let γ and γ' be non-negative integers. We say that the graph G is (γ, γ') bi-embeddable if G can be embedded in a surface of genus γ and the complement Ḡ of G can be embedded in a surface of genus γ'. Let N(γ, γ') be the least integer such that every graph with at least N(γ, γ') points is not (γ, γ') bi-embeddable. It has been shown in [1] and [5] that N(0, 0) = 9; this result was also obtained by John R. Ball of the Carnegie Institute of Technology. Our object here is to obtain upper and lower bounds for N(γ, γ').
Publisher
Cambridge University Press (CUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. References;North-Holland Mathematics Studies;2001
2. Voltage Graphs;North-Holland Mathematics Studies;2001
3. Biplanar Graphs:;Computers & Mathematics with Applications;1997-12
4. Infinite families of bi-embeddings;Discrete Mathematics;1990-06
5. Triples, current graphs and biembeddings;Aequationes Mathematicae;1982-12