Abstract
Using the definition of a Riemann surface, as given for example by Ahlfors and Sario, one can prove that all Riemann surfaces are orientable. However by modifying their definition one can obtain structures on non-orientable surfaces. In fact nonorientable Riemann surfaces have been considered by Klein and Teichmüller amongst others. The problem we consider here is to look for the largest possible groups of automorphisms of compact non-orientable Riemann surfaces and we find that this throws light on the corresponding problem for orientable Riemann surfaces, which was first considered by Hurwitz [1]. He showed that the order of a group of automorphisms of a compact orientable Riemann surface of genus g cannot be bigger than 84(g – 1). This bound he knew to be attained because Klein had exhibited a surface of genus 3 which admitted PSL (2, 7) as its automorphism group, and the order of PSL(2, 7) is 168 = 84(3–1). More recently Macbeath [5, 3] and Lehner and Newman [2] have found infinite families of compact orientable surfaces for which the Hurwitz bound is attained, and in this paper we shall exhibit some new families.
Publisher
Cambridge University Press (CUP)
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献