Abstract
This paper is a sequel to [2]. A polycyclic-by-finite group G was there called dihedral free if G contains no subgroup isomorphic to 〈b, a:ba = b-1 a2 = 1〉 whose normalizer has finite index in G. It was shown in [2, Theorem F] that, if R is a commutative Noetherian domain, the group ring RG is a prime Noetherian maximal order if and only if R is integrally closed, G is dihedral free, and G has no non-trivial finite normal subgroups. Throughout, R and G will be assumed to satisfy these hypotheses. The main aim of the paper is to study the class group of the maximal order RG.
Publisher
Cambridge University Press (CUP)
Reference14 articles.
1. The Structure of Fields
2. X-inner automorphisms of group rings II;Montgomery;Houston J. Math.,1982
3. Crossed products over prime rings
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献