Author:
FACCHINI ALBERTO,ECEVIT ŞULE,KOŞAN M. TAMER
Abstract
AbstractWe show that the endomorphism rings of kernels ker ϕ of non-injective morphisms ϕ between indecomposable injective modules are either local or have two maximal ideals, the module ker ϕ is determined up to isomorphism by two invariants called monogeny class and upper part, and a weak form of the Krull–Schmidt theorem holds for direct sums of these kernels. We prove with an example that our pathological decompositions actually take place. We show that a direct sum ofnkernels of morphisms between injective indecomposable modules can have exactlyn! pairwise non-isomorphic direct-sum decompositions into kernels of morphisms of the same type. IfERis an injective indecomposable module andSis its endomorphism ring, the duality Hom(−,ER) transforms kernels of morphismsER→ERinto cyclically presented left modules over the local ringS, sending the monogeny class into the epigeny class and the upper part into the lower part.
Publisher
Cambridge University Press (CUP)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献