Abstract
Applying Hopkins's Theorem asserting that each unitary right Artinian ring is right Noetherian, G. Köthe and K. Shoda proved the following theorem (cf. Köthe [7], p. 360, Theorem 1 and p. 363, Theorem 5): If R is a unitary right Artinian ring, then the following statements hold:(i) Each nilpotent subring of R is contained in a maximal nilpotent subring of R.(ii) The intersection of all maximal nilpotent subrings of R is the maximal nilpotent twosided ideal of R.(iii) All maximal nilpotent subrings of R are conjugate.
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Semilocal Rings and the Jacobson Radical;Grundlehren der mathematischen Wissenschaften;1976
2. Modules of Finite Length and their Endomorphism Rings;Grundlehren der mathematischen Wissenschaften;1976
3. On the locally antisimple radical;Glasgow Mathematical Journal;1972-03
4. Ring Theory;Algebra and Geometry;1972
5. Quotient rings;Algebra and Logic;1969-07