Late Palaeozoic to Early Cenozoic geological evolution of the northwestern German North Sea (Entenschnabel): New results and insights

Author:

Arfai Jashar,Jähne Fabian,Lutz Rüdiger,Franke Dieter,Gaedicke Christoph,Kley Jonas

Abstract

AbstractThe results of a detailed seismic mapping campaign of 13 horizons in the northwestern German North Sea, covering Late Permian to Palaeogene sedimentary successions, are presented. Based on the interpretation of four 3D and two 2D seismic surveys, thickness and depth maps of prominent stratigraphic units were constructed. These maps provide an overview of key structural elements, the sedimentation and erosion, and give insights into the evolution of the German Central Graben. The base of the Zechstein Group reaches a maximum depth of 7800 m within the German Central Graben. Lateral thickness variations in the Zechstein reflect the extensive mobilisation of Zechstein salt. Complex rift-related structures, with the Central Graben as the main structural element, were found not later than the Early Triassic. Up to 3000-m thick Triassic sediments are preserved in the eastern German Central Graben of which 1800 m consist of Keuper sediments. The Lower Buntsandstein unit shows increasing thicknesses towards the southeastern study area, likely related to distinct lateral subsidence. As a consequence of uplift of the North Sea Dome, Middle Jurassic sediments were eroded in large parts of the northwestern German North Sea and are only preserved in the German Central Graben. The NNW–SSE oriented John Basin is another important structural element, which shows maximum subsidence during the Late Jurassic. In most parts of the study area Lower Cretaceous sediments are absent due to either erosion or non-deposition. Lower Cretaceous deposits are preserved in the Outer Rough Basin in the northwest and within the German Central Graben. Upper Cretaceous sediments are found at depths between 1500 and 3600 m, reaching a maximum thickness of approximately 1600 m on the Schillgrund High. Contraction and inversion of pre-existing Mesozoic faults during the Late Cretaceous is distinct at the Schillgrund Fault, i.e. the eastern border fault of the Central Graben. The Palaeogene is predominantly a period of strong basin subsidence. Within 37 Myrs, up to 1400 m of Palaeogene sediments were deposited in the northwesternmost part of the study area. Detailed mapping of salt structures enables a reconstruction of halokinetic movements over time and a deciphering of the influence of the Zechstein salt on the sedimentary evolution during the Mesozoic and Cenozoic. Increasing sediment thicknesses in rim-synclines indicate that most of the salt structures in the German Central Graben had their main growth phase during the Late Jurassic.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3