Abstract
Abstract
The affine Deligne–Lusztig variety
$X_w(b)$
in the affine flag variety of a reductive group
${\mathbf G}$
depends on two parameters: the
$\sigma $
-conjugacy class
$[b]$
and the element w in the Iwahori–Weyl group
$\tilde {W}$
of
${\mathbf G}$
. In this paper, for any given
$\sigma $
-conjugacy class
$[b]$
, we determine the nonemptiness pattern and the dimension formula of
$X_w(b)$
for most
$w \in \tilde {W}$
.
Publisher
Cambridge University Press (CUP)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis
Reference24 articles.
1. Geometric and homological properties of affine Deligne-Lusztig varieties
2. Isocrystals with additional structure;Kottwitz;Compos. Math.,1985
3. Generic Newton points and the Newton poset in Iwahori-double cosets;Milićević;Forum Math. Sigma
4. Projectivity of the Witt vector affine Grassmannian
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献