On the derivation of the wave kinetic equation for NLS

Author:

Deng Yu,Hani ZaherORCID

Abstract

Abstract A fundamental question in wave turbulence theory is to understand how the wave kinetic equation describes the long-time dynamics of its associated nonlinear dispersive equation. Formal derivations in the physics literature, dating back to the work of Peierls in 1928, suggest that such a kinetic description should hold (for well-prepared random data) at a large kinetic time scale $T_{\mathrm {kin}} \gg 1$ and in a limiting regime where the size L of the domain goes to infinity and the strength $\alpha $ of the nonlinearity goes to $0$ (weak nonlinearity). For the cubic nonlinear Schrödinger equation, $T_{\mathrm {kin}}=O\left (\alpha ^{-2}\right )$ and $\alpha $ is related to the conserved mass $\lambda $ of the solution via $\alpha =\lambda ^2 L^{-d}$ . In this paper, we study the rigorous justification of this monumental statement and show that the answer seems to depend on the particular scaling law in which the $(\alpha , L)$ limit is taken, in a spirit similar to how the Boltzmann–Grad scaling law is imposed in the derivation of Boltzmann’s equation. In particular, there appear to be two favourable scaling laws: when $\alpha $ approaches $0$ like $L^{-\varepsilon +}$ or like $L^{-1-\frac {\varepsilon }{2}+}$ (for arbitrary small $\varepsilon $ ), we exhibit the wave kinetic equation up to time scales $O(T_{\mathrm {kin}}L^{-\varepsilon })$ , by showing that the relevant Feynman-diagram expansions converge absolutely (as a sum over paired trees). For the other scaling laws, we justify the onset of the kinetic description at time scales $T_*\ll T_{\mathrm {kin}}$ and identify specific interactions that become very large for times beyond $T_*$ . In particular, the relevant tree expansion diverges absolutely there. In light of those interactions, extending the kinetic description beyond $T_*$ toward $T_{\mathrm {kin}}$ for such scaling laws seems to require new methods and ideas.

Publisher

Cambridge University Press (CUP)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis

Reference51 articles.

1. [16] Deng, Y. and Hani, Z. , ‘Full derivation of the wave kinetic equation’, Preprint, 2021, arXiv:2104.11204.

2. Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation

3. Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ³

4. [19] Deng, Y. , Nahmod, A. R. and Yue, H. , ‘Random tensors, propagation of randomness, and nonlinear dispersive equations’, Preprint, 2020, arXiv:2006.09285.

5. [12] Collot, C. and Germain, P. , ‘On the derivation of the homogeneous kinetic wave equation’, Preprint, 2019, arXiv:1912.10368.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3