The Angular Size - Redshift Relation as A Cosmological Tool

Author:

Kapahi V.K.

Abstract

The angular size - redshift (θ - z) relation can in principle be used to discriminate between world models because the angular size subtended by a rigid rod is quite a sensitive function of cosmology, specially at z ≳ 0.5. The test is simpler to apply to objects for which a metric diameter is measured than to objects with isophotal diameters (Sandage 1961). It was first suggested by Hoyle (1958) at the Paris symposium on Radio Astronomy, that the separation between the two lobes of extragalactic radio sources such as Cyg-A, could be used for performing such a test. In an Einstein-de Sitter Universe sources like Cyg-A cannot have angular sizes ≲ 15 arcsec (the minimum occuring at z = 1.25) whereas in the Steady State Universe their sizes should asymptotically approach a value near 4 arcsec at large redshifts. It was not until the early seventies that the test was actually applied to samples of radio quasars with redshifts of upto ∼ 2 (Legg 1970; Miley 1971; Wardle & Miley 1974). The angular sizes were found to show a large scatter due to a wide distribution of physical sizes and the projection effects associated with the essentially linear radio structures. The upper envelope to the θ -values (which would be expected to show much less scatter) nevertheless appeared to fall off monotonically with increasing z, more or less like the Euclidean relation θ ∝ z−1. The θ - z test thus appeared to be incompatible with the predictions of uniform world models in which the linear sizes of quasars are independent of epoch.

Publisher

Cambridge University Press (CUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3