Abstract
Results of linear αΩ-dynamo models are confronted with radio polarization observations of spiral galaxies. The general distribution of polarized emission and the magnetic field pitch angle can be described with sufficient accuracy. The occurrance of systematic large-scale variations in Faraday rotation (RM) is the strongest argument in favour of dynamo theory. However, the predominance of axisymmetric SO modes could not be confirmed by observations; S1 modes are about equally frequent. The azimuthal variations of field pitch angles and, in two cases, the phases of the RM variations are inconsistent with a classical αΩ-dynamo. Locally deviating RM values indicate field lines bending out of the plane. There is increasing evidence that galactic fields cannot be described by simple dynamo modes. This calls for more realistic dynamo models, taking into account non-axisymmetric velocity fields and galactic winds.Interpretation of radio observations is difficult because Faraday depolarization can seriously affect the data. Observations of small-scale field structures are summarized which show the path for future research. Instrumental needs for such investigations are discussed.
Publisher
Cambridge University Press (CUP)